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ABSTRACT 

Through an analysis of quantum field theory with "fundamental 

length" 9,, 
l-10 

a new concept of gauge vector field is determined. The 

electromagnetic field is considered in detail. New electromagnetic 

potential turns out to be 5-vector associated with De Sitter group 

SO(4,l). The extra fifth component, called T-photon, similar to 

scalar and longitudinal photons, does not correspond to an independent 

dynamical degree of freedom. Gauge invariant equations of motion for 

all components of electromagnetic 5-potential are found. Tnough the 

new gauge group remains Abelian, it is nevertheless larger than the 

conventional gauge group. In particular, new gauge transformations 

intrinsically depend on fundamental length P.. Therefore one can 

consider them as a base for modification of QED at small distances 

(Sk) in a profound way. The underlying physics becomes much richer 

due to the appearance of new interactions mediated by the T-photons. 
14 
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I. FIRST DILEMMA: FLAT OR CURVED 4-MOMFJJTUM SPACE? 

Let us consider the free Klein-Gordon and Dirac equations in the 

momentum space: 

(P2 - ml*) i+(P) = 0 I (1.1) 

(ti - m2 )*(P)=o . (1.2) 

The solutions of these equations are defined on the 3-dimensional hyper- 

boloids 

2 2 
In1 -p =o, m2 2 2=0. -p (1.3) 

It is important to realize that these surfaces can be equally well 

embedded into pseudoeuclidean (Minkowskian) 4-dimensional momentum space 

or into 4-dimensional De Sitter momentum space with the arbitrary curvature 

radius M 

2 2 2 2 2 2 PO - Pl - P2 - P3 -Mp4 =-M2 . (1.4) 

The interacting (virtual) particles, which are located in p-space 

off the mass shell, are able to distinguish these two geometries if their 

4-momenta are large enough: 

p. r I;1 2 M . (1.5) 

In the papers, '-lo a new approach to the quantum field theory (QFT) 

has been put forward, the key idea of which can be formulated as follows: 

The extrapolation off the mass shell, which is absolutely 

necessary for the description of an interaction in QFT, has 
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to perform according to the rules of a geometry of De Sitter 

p-space (1.4). 

Minkowskian geometry is the "flat limit" (M + ") of De Sitter 

geometry. Therefore in the domain 

1~~1 r /;I << M (1.6) 

the new QFT has to coincide with the conventional local QFT based on the 

pseudoeuclidean p-space: 

II. PSEUDOEUCLIDITY OF MOMENTUM SPACE IN A FRAMEWORK 

OF CONVENTIONAL QFT 

Just to illustrate a pseudoeuclidian character of p-space in a 

framework of the local theory, let us consider QED. The gauge invariance 

principle requires that 

% -+ pv - eoAp . (2.1) 

If e A = const : k 
OU v ' 

we have no electromagnetic field (Fuv = 01, and 

(2.1) reduces to the pseudoeuclidian translation of the p-space3 

Pi +P~ - ku . 
(2.2) 

Let us point out that on the surface (1.4),instead of (2.2) we 

should deal with De Sitter rotations in (p p )-planes: 
!J 4 

* 
References on earlier attempts to use De Sitter p-space geometry in QFT 

can be found in Ref. 2. The mathematical formulation of nonlocal QFT, 

based on ideas which are close to a concept of noneuclidean p-space, was 

11 
developed by M.A. Markov many years ago. 
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(pL)' = AL(krpM, L,M = 0,1,2,3,4 

A E SO(4,l) . (2.3) 

These transformations are equivalent to shifts (2.2) only in the small 

momentum region (1.6). Unlike (2.2), they are not a group anymore. Thus 

one can expect that in the new QED, based on the p-space (1.41, the gauge 

invariance principle and the concept of a gauge vector field (electro- 

magnetic potential Au) should be revised. 

III. FUNDAMENTAL MASS AND FUNDAMENTAL LENGTH 

We call M the "fundamental mass." The inverse quantity 

(3.1) 

will be referred to as the "fundamental length." From the above con- 

sideration it follows that the usual QFT corresponds to P,=o. 

Further on we shall choose the units 

%=c=,k=M=l (3.2) 

to deal only with dimensionless relations. The equation (1.4) reads 

now : 

2 
PO 

- ;2 - p42 = -1 . (3.3) 

It will become clear later that a description in terms of 5-vectors is 

useful. Introducing the metric tensor gKL of the pseudoeuclidean 5-space 
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gm = 0 ,if KfL 

diw gIcL = (1, -1, -1, -1, -1) , (3.4) 

we can write Eq. (3.3) in the form: 

gKLpKpL : (p2) = -1 . (3.5) 

It turns out that the origin of a coordinate system in De Sitter p-space 

(3.3) corresponds to 5-vector 

VL = (0, 0. 0, 0, 1) (3.6) 

(so called "vacuum momentum"*). This is confirmed by the following 

observation: the "shift transformation" (2.3) with k L 
= (0. 0, 0, 0, 1) 

is equivalent to the identity transformation of S0(4,1)-group. 

The De Sitterian distance S 
PO 

between the arbitrary point p and 

the origin of the coordinate system is defined from the relation 

cash S 
PO = IgKLPKvLI = lP41 = IA-Z 1. (3.7) 

In the free particle case p2 = m2 we shall use the notation 

S po = P. Then (3.7) reads 

7 cash p = 1 + m (3.8) 

* 
This notion, in a. context of QFT with the curved momentum space, has 

been introduced by I.E. Tamm. 
2 
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IV. NORMAL AND ABNORMAL EQUATIONS OF MOTION 

It has been shown 4,7 that in the new scheme one has the pair 

equations of Klein-Gordon type: 

2(P4 - cash ~1 @l = 0 , 

2(p* + cash 11) $2 = 0 , 

where p4 = g44p 
4 = -p4 . 

me to the relation 

(4.la) 

(4.lb) 

(P2 - In*) = (P4 - cash p)(p4 + cash u) (4.2) 

the standard Klein-Gordon equation (1) follows from each of Eqs. (4.la) and 

(4.lb). The sign of the invariant auxiliary coordinate p 4 is a new quantum 

number associated with a symmetry of new p-space (3.3) under inversion 

P4 
4 

-f -P 

and having no analog in the "flat" QFT. Let us consider in this 

connection the "flat" limit of Eq. (4.11, assuming naturally that the 

origin of coordinate system (3.6) has to belong to the small momentum 

region (1.6). The last statement means that a more precise definition 

of the pseudoeuclidean approximation, other than (1.6), is the following: 

IPOll I$1 << 1 

P4 

2 
=I+$- _ (4.3) 

With the same accuracy, 
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2 
cash p =1+: . (4.4) 

Taking into account (4.3) - (4.4), one obtains from (4.la) and (4.lb): 

(P2 - m2) "l = O 

%=O . 
(4.5) 

Thus (4.la) is a straight generalization of the conventional Klein- 

Gordon equation (1.1) and it will be referred to in what follows as 

a normal equation of motion for scalar field. Correspondingly, (4.lb) 

will be called an abnormal equation of motion. Let us emphasize once 

more that the existence of this extra equation and abnormal field @2 

are intrinsically connected with the new p-space geometry, or, 

in other words, with our fundamental length hypothesis. 

We would like to point out that due to the relations (cf. (3.51, 

(3.7) 1 

p4 = -(Pm , 

(p2)=-1 r (V2) = -1 , (4.6) 

one can write down the Eqs. (4.la, 4.lb) in the S0(4,1)-covariant form: 

21.1 [(p-V)* - 4sinh $$l = 0 , (4.7a) 

[(4sinh2t - (P+V)~I$~= 0 . (4.7b) 

It is clear that for an arbitrary 5-vector AL the fOllOWing factor- 

ization formula is valid 
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(Al2 = gmAKAL = (AKrK) (ALrL) , (4.8) 

where YL '= (Y",Yl,r2,r3,r4) denote five forth-order anticomuting matrices: 

frK,rLl = rKrL +rLrK = zgKL 

K.L = 0,1,2,3,4 (4.9) 

Using (4.81, one can "extract the square root" from Eqs. (4.73) and 

(4.7b) and obtain as a result the pair of equations, playing the role of 

Dirac equations in the new scheme, normal and abnormal, respectively* : 
10 

w - (p4 - l)r4 - 2sinh :lel= 0 , (4.10a) 

[$+ (p4+1)r4-2sinh$l$2=0 . (4.10b) 

V. SECOND DILEMMA: 4-DIMENSIONAL OR 5-DIMENSIONAL LANGUAGE? 

Let us introduce now in De Sitter p-space (3.3) the orthogonal 

"spherical" coordinates: 

PO = sinh x -m < x < m 

P4 = cash x cos w , 0 .i!lJilT 

P1 = cash x sin w sinems $, 0 ce<n,o<'$<2TI 

P2 = cash x sin w sinesin $ 

P3 = cash x sin w cos8 . (5.1) 

* 
The matrix r 

4. 
m (4.10) is chosen in the form 

r4 5 = -iy = -1 
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In these coordinates the pseudoeuclidean region (4.3) is described 

in an especially simple way: 

1x1 <<l , w<<l . (5.2) 

Havins the exrjression (5.1) for p", p'and p4 , one can put them into 

Eqs. (4.1) and (4.10) and forget completely about the existence of 5- 

dimensional hyperboloid (3.3). The theory becomes manifestly 

4-dimensional, though the domain of definition of the new four variables 

(x,w,e,@) differs obviously from the domain of definition of the car- 

responding "flat" variables (p",I p'l,e,$). 

As an example, we write down the normal Eq. (4.la) in terms of the 

four new variables: 

2(cosh x cos w - cash ~)$~(x,w,e,@) = 0 . (5.3) 

In the same time one could deal with the five Cartesian coordinates 

(p",&p4) for a description of free fields in De Sitter momentum space 

(3.3), if each of the equations (4.la), (4.lb), (4.10a) and (4.10b) will 

be accompanied by a constraint based on Eq. (3.3). Then, for example, 

the analog of Eq. (5.3) will be the following set of equations: 

2(P4 - cash !+(p",;,p4) = 0 

(PO2 - z2 - p4* + l,mlcp0,;,p4, = 0 . 

Similarly, for a normal spinor field Q1 from (4.10a) one has 

(Id - (P4 C - l)r 4 
- Zsinh $)~),(p~,~,p~) = 0 

(PO2 - ;* - P42 + 1 ,$,(PO,;,P4, = 0 . 

(5.4) 

(5.5) 
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We should stress that both the 4-dimensional and 5-dimensional approaches 

are evidently equivalent to each other, and give us the same free fields. 

But they require an application of completely different mathematical 

apparatus if one considers an interaction in the gauge theory context, -- 

in the framework of these approaches. 

To use the local gauge transformation, we need first to go to 

the x-representation in our field equations. In the 4-dimensional 

case (Eq. (5.3)), the approapriate Fourier transform is connected with 

the expansion in terms of matrix elements of the S0(4,1)-group unitary 
.” 

representations.LL The new configurational x-space possesses a specific 

quantized structure, the size of granularities being 2. 
2-4* 

In this 

space Eq. (5.3) becomes the second-order differential-difference equation. 

The step used by the finite-difference derivativeisproportionaltothe 

fundamental length a. 

The gauge theory which one could develo- ,., under such conditions6 

would be a covariant analog of the gauge theory on the lattice. 
13 

* 
In the euclidean version of the theory developed, with p" 5 in, one 

would obtain from Eq. (3.3): 

2 
11 + ;* + p42 = 1 _ (5.6) 

The corresponding x-space is a completely discrete manifold, consisting, 

for example, of the Casimir operator eigenvalues of the group chain: 

SO(S) 3 SO(4) 3 SO(3) 3SO(2) . 
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Let us come back now to the 5-dimensional formulation (Eqs. (5.4) - 

(5.5) 1. It is absolutely clear that for these pairs of equations, the 

appropriate Fourier transform is the expansion in terms of plane waves 

of the pseudoeuclidean 5-space with the metric tensor (3.4). 

L 
1 -ipLx 

$(X,T) = $(p",;,p4)d5p;L=0,1,2,3,4 . (5.6) 
(2*) 

Here we have introduced the notation T for the extra variable x4: 

L 012 3 4 
x = lx rx .x ,x ,x 1 = d,T) . (5.7) 

In the configurational 5-space Eqs. (5.4) - (5.5) take the form of the 

set of differential equations: 

2(-i 8 - cash u)$~(x,T) = 0 

2 
(a -a- 

aT* 
l) +1(x,T) : (0 - 1)$1(W) = 0 (5.8) 

and 

rL -?-- + r4 
axL 

- 2 sinh thJ1(x,T) = 0 

(0 - 1) *,tx, T) = 0 . (5.9) 

A presence of the extra variable T in the motion equations requires 

that their solutions obey some additional boundary conditions. In the 

given (free) case such conditions can be found directly by solving 

Eqs. (5.8) - (5.9). From Eq. (5.8) one has: 

$J~(x,T) = e ircosh yx,o) (5.10a) 

(5.10b) (0 + m2)+Jx,0) = 0 . 
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Eq. (5.10b) is the standard Klein-Gordon equation for the physical 

4-dimensional scalar field with the mass equal m. Putting$l(x,O! zf+ 
physCX)' 

we have to conclude from (5.10~1) that the unique boundary condition under 

question is of the form*: 

0, (x, T) = +phys (xl I (5.121 

T=o 

The analogous boundary condition can be obtained from (5.9) for the 

spinor field $lCx,r): 

$qX.T) 
I 

= $phys (x) I 

T=O 

where the field $ 
phy* 

obeys the equation 

(5.13) 

[i$' - (cash p - l)r 
4 

- 2 sinh !$l$phys(~) = 0 . (5.14) 

As a matter of fact the relations (5.12) - (5.13) teach us to come 

from 5-dimensional world back to the physical 4-world in the simplest 

free particle case. Taking into account the correspondence reasonings, 

we shall impose these boundary conditions in the interacting field case 

as well 
** 14 

_ 

* 
If 4 physCX) 

is a hermitian field, then 

$l (x.-T) + =$l(X,T) (5.11) 

Later on we shall consider (5.11) as the hermiticity condition in the new 

scheme. 

** 
This way of eliminating the extra variable T recalls the procedure of 

eliminating the relative time dependence in 4-dimensional Bethe-Salpeter 

equation when one is going to get the relativistic 3-dimensional quasi- 

potential equation by Logunov and Tavkhelidze 
15 

or the nonrelativistic 

Schredinger equation. 
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Let us assume now that the set of Eqs. (5.9) describes the free 

electron-positron field. We would like to introduce in (5.9) the inter- 

action with electromagnetic field A 
lJ' 

requiring the invariance of the 

equations considered under local gauge transformations. But all five 

M 
variables x = (x ',T) are presented in (5.9) on an equal footing. 

Therefore if h is the parameter of the global U(l)-group, then the 

Yang-Mills trick in the framework of the 5-dimensional approach has to 

look like 

A + h(x, T) . (5.14) 

Furthermore we can conclude that the electromagnetic potential has 

to be 5-vector, each component being a function of the variables (x,T): 

A 
M = U$,(x, I-), A4(x,r)); M = 0,1,2,3,4 . (5.15) 

u = 0,1,2,3 

Our goal now is to find the motion equations for A 
)1 

and A4 which 

would be invariant under gauge transformations depending on A(x.T). In 

other words, we are looking for a generalization along our lines for the 

Maxwell equations* 

; (5.16) 

* 
Let us recall that other Maxwell equations 

aF 
PV aF"A aFA!J -,- + -~ + __ = 0 

axA as 89 

are identities due to the definition of field strengths: 

aA (x) aA (x) 
F =u--L.--- 

li" ax" ax” 

(5.18) 

(5.19) 
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and the standard gauge transformation 

ax(x) AU(x) +Au(x) - - . 
axp 

(5.17) 

One can expect that the equations under question are a set of equations 

similar to (5.8) - (5.9). So we immediately can write down 

(0 - l)AM(x,~) = 0 , M = 0,1,2,3,4 . (5.20) 

The other equations for A and A 
u 4 

seem to be the first order differential 

equations in x and T . 

VI. NEW CONCEPT OF GAUGE TRANSFORMATION 

The field Av is a more familiar object with which to begin. In the 

usual approach using Lorentz gauge 

an”(x) = o 
ax’ 

, 

one would get from Eq. (5.16) the D'Alembert equation 

q AI1W = 0 

with the constraint 

OX(x) = 0 

(6.1) 

(6.2) 

(6.3) 

on the function X(x) in (5.17). 

According to (4.1) in the new scheme, we have two analogs of Eq. (5.2). 

Taking into account the correspondence reasonings (see (4.5)), it is 

natural to choose the normal Eq. (4.la) with u=O as a motion equation for 

Av in the given gauge. Thus we obtain in (x,r)-representation (the 
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constraint (5.20) assumed to be imposed already) 

2(-i? - 1)A (x,T) = 0 . 
u 

(6.4) 

Neutrality of the "physical" field A (x,0) means (cf. (5.11)): 

Ap+( X,-T) = Av(x,~C) . (6.5) 

Equation (6.4) can be written down in the SO(4,1)-covariant form as well 

(see (4.7a.l) : 

gm(iL- a 
axK 

V,) (i - - 
axL 

VL)Au(x,~) = 0 , (6.6a) 

0 [e 
i(VX) 

Auk,~)l = 0 . (6.6b) 

Hence, one may conclude that an analog of the constraint (6.3) on admissible 

A(x,?)-functions, parametrizing the gauge transformation under question, is 

the 5-dimensional D'Alembert equation, similar to (6.6b): 

Q [eiVX h(X,T)l = 0 . (6.7) 

It is clear now that Eq. (6.6b) is invariant under the transformation 

ei WX) Auk,0 + e i&X) 
A,,(x,T) - . (6.8) 

Thus we have obtained a pattern of a new gauge transformation. One 

can now extrapolate this formula to the case of the arbitrary function 

A(X,T). 

As we have already seen, due to the presence of spurious "vacuum 

vector" vL, our approach becomes a formal s0(4,1)-covariant scheme. FOT 
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this reason the 5-dimensional version of the transformation (6.8) 

e 
i (VX) 

AM(x, T) + eitVX)AM(x,T) - + ecivx) X(x, T) 
ax 

M = 0,1,2,3,4 (6.9) 

must now make sense. -- __-- 

Taking VL = (O,O,O,O,l) one gets from (6.9): 

Au(x,r) -+Avlx,~T) - ah(x'r) 
ax” 

(6.10a) 

A4(x,r) -+A4(x,') + ih(X,T) - 
ax(x,r). 

ar . (6.10b) 

Let us point out that ~(x,T) in (6.10) cannot be a completely arbitrary 

function of the five variables (x,~). Due to Eq. (5.20), it has to obey 

our standard constraint: 

ccl -l)A(X,T) = 0 . (6.11) 

In other words, in the p-representation this function is defined in the 

4-dimensional De Sitter space (3.3). This leads to an intrinsic 

dependence of the gauge transformation (6.10) on fundamental length. 

Further, due to (6.5). the function X(X,T) has to satisfy the generalized 

hermiticity condition: 

A+(x.-r) = h(X.T) . (6.12) 

But if (6.12) is a new definition of hermiticity, then quantities like 

R(x,r) = exp[ieOe-lT h(x,~)l; eo-electric charge (6.13.a) 

have to be treated as "unitary": 
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(6.13b) 

In terms of (6.13a), the transformation (6.9) can be written as 

.-is 
AM(xr~) + a(xrT)emiTAM(x,r) ~(x,T)-~ - +- fi-‘(x,~). (6.14) 

0 

Corresponding gauge transformation of the charge particle field is of the 

form 

*(x.T) + exp[ieoZiT X(x,r)l$(x,r) . (6.15) 

From (6.10b) and (6.12) one can conclude that 

A4(X,-0 
t 

= -A4(x,T) . (6.16) 

The minus sign in (6.16) has a simple geometrical meaning: A4 is 

the "fifth" component of the 5-vector AL and changes its sign under 

T-reversal. 

If i(x,T) satisfies Eq. (6.71, th en taking into account Eq. (6.111, 

one gets (cf. (6.4)) 

2(-i J$ -l)X(x,r) = 0 . (6.17) 

This equation obviously provides the invariance of Eq. (6.4) under the 

transformation (6.10.a). Further taking into account Eq. (6.17), one can 

resolve from (6.10b) that A4 is a gauge invariant quantity. 

VII. NEW EQUATIONS FOR FREE ELECTROM?.GNETIC FIELD 

To find the most general equations of motion for all five components 

of electromagnetic potential that would be invariant under gauge 



-18- FERMILAB-Pub-78/22-THY 

transformation (6.9) - (6.10), we shall introduce the generalized field 

strengths: 

Fm(x,r) = a[e 
i (VX 

axN 
!A Jx,')] - a[ei(VX)AN(x,,)l . 

axM 
(7.1) 

For physical %acuum vector" (3.6) 

F 1 
aAuCx, T) aA"h, T) -iT 

U" = ax" ax" 
le , (7.2) 

F 
p4 = 

-.i[Au(x,'r) + i 2 - i 3 ]ebi' . 
axp 

(7.3) 

Let us now consider the 5-dimensional analog of Maxwell equations (5.16) 

and (5.18): 

aFim 
axN=O 

aFMN aFNL aFLM -+-+----co ; 
axL axM axN 

M,N = 0,1,2,3,4 . 

(7.4) 

(7.5) 

Similar to the 4-dimensional case, Eq. (7.5) results automatically from 

the definition (7.1). It is also clear that Eqs. (7.4) and (7.5) are 

invariant under the new gauge transformation (6.9). 

From (7.4) and (7.5) one obtains 

and 

r aFu"(x,T) 

axvq-= 

aFu4h,T, 

ar 

‘, aFp”(x,T) aF",x(x'T) 

axA 
+ + 

aFAu(x,T) 
0 

a2 ax" 

af,,” (x,T) aFp4(x,r) aFy4(X,T) 

ar = 
ax' a2 

(7.6a) 

(7.6b) 

(7.6~) 
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The simplest way to derive the conventional Maxwell equations from 

the set (7.6) - (7.7) is to put 

Fp4(x,o = o , 

or, in S0(4.1)-covariant form, 

v~F~(x,T) = o . 

(7.8s~~) 

(7.8b) 

Then from (7.6c), (7.2) and (5.19) one finds 

Fuv(x,‘) = F p,,(x,O) = F,,vM (7.9) 

and Eqs. (7.6a,b) become identical to (5.16) and (5.18).* 

Let us point out that the gauge invariant condition (7.8) is in fact 

a first order differential equation: 

* 
Furthermore, taking into account (7.2 and (7.9) we can write: 

aA (X,T) 
-IL-.--- 

aA” (X,T) 
_ iTF 

ax” a2 
u”(x) . 

Hence, this tensor is permanently satisfied the D’Alembert equation of 

the normal type (6.4). This equation, together with the constraint (5.20), 

gives rise to the equation BF (xl = 0, which is permanently valid in 
uv 

the Maxwell theory of free electromagnetic field. 
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Au(x,T) + i 
ycx, T) 

aT -i 

aA Ix, T) 
=o _ 

ax” 
(7.10) 

It is easily seen that Eq. (7.64 is equivalent to the following: 

-iT e c (o- l)Ap( x.0 - i 

a 
+i- A4(x,~) - i 

aA (x, T) 

axu 
aT 

ci 

Taking into account the constraint (5.20) and Eq. (7.10), one can conclude 

that Eq. (7.11) would be satisfied if the following first-order equation 

is valid: 

aA (x. T) 
A4(x,T) - i -- 

aAv(x,r) 

ar + i ax" = O . 
(7.12) 

Let us note parenthetically that the constraint (5.20) for A4(x,~) 

(@ - l)A4(x,0 = 0 

is a corollary of Eq. (7.10) and Eq. (7.12). 

Summarizing the results obtained, we can state that the set of 

differential equations 

2 A,,(x,T) + i 
c 

aA,, (x,T) aA 
ar -i---- ~0 

axi’ 3 

C 

aA4(x,T) 
2 A4(x,~) - i ar t i 

aA”(x,T) 
ax =o I 

" 3 

c (0 - O)AM(x,r) = 0 (7.13) 

has the following properties: 

i) It is invariant under gauge transformation (6.10), where A(x,r) 
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is obeying Eq. (6.11, and generalized hermiticity condition 

(6.12) ; 

ii) It gives rise to the standard Maxwell equations for a free 

electromagnetic field. 

In addition, from the explicit form of (7.13) one can conclude that 

iii) It is invariant under the following transformation of 

5-potential AM(x,r): 

(7.14) 

Hence, one has the right to put (cf. (6.5) and (6.16)) 

x,-T) = (Ap(x,*), -A4(x,Q) (7.15) 

Beginning now we shall consider (7.13) as equations of motion for free 

electromagnetic field in our approach (cf. (5.8) and (5.9)). 

Let us note that the pair of first-order equations from (7.13) can 

be written in the Euler-Lagrange form: 

a L b,~) a 

aAMtk,TI 

=- 
K 

ax 
; K, M = 0,1,2,3,4 , 

where 

L(xrT) = 2AMt(x,TJ A”(x,T) + i Apt(x,r) 
[ 

1-1 aA ‘kT) 
aA A:rT)- * A”c~,~) 

I 

+ 

+ i A4(x,r) 
r 

aAqt (xrT) 4 

ar - A~+(x,T)~~ (;iT) + 1 
+ 2i Av+(x,r) C 

4 
aA iz"' + Auk,0 

aA4+hd 

v axp 1 . 

(7.16) 

(7.17) 
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Using (7.15),it is easy to show that 

L+(M) = L(X,T) . (7.18) 

Coming back to the formulation of this theory in terms of field 

strengths (7.11, one can rewrite Maxwell equations for Fpv(x,~) in a 

manifestly dual-invariant form: 

aFl,“h’ T) 

axv = O ; 

afpvh, T) 

ax” 

aFIJv(x,e ai b,d 
ar =o ; -WJ aT =o, (7.19) 

where 

FN”(X,T) = %E ‘vKA FKx(x,~) . (7.20) 

The extra equation (7.8) can be considered dual-invariant also if, by 

definition, 

fM4(x,.,) = F u4(x,T) . (7.21) 

The relations (7.20), (7.21) give rise to the following expression for 

the dual 5-tensor of electromagnetic field strengths: 

iMN(X,T) = +PUR FKL(x,r)vR t w"FNK(x,r) - vNFMK(x,~)]vK , 

(7.22) 

where E 
MNKLR 

1s a totally antisymmetric tensor such that 
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VIII. LORENTZ GAUGE AND T-PHOTONS 

As a first use of Eq. (7.13) one can consider them together with 

different gauge constraints for the 5-potential AM(x, d. 

Choosing 

A4(x,~) = 0 I (8.1) 

one evidently obtains Eq. (6.4) for Au(x,~) and the Lorentz-type gauge: 

aA (XJ) 
-+-p--o . 18.2) 

lJ 

According to Section VII, Eq. (8.1) is invariant under gauge transformation, 

which is allowed by (8.2). 

Actually the constraint (8.1) is more restrictive than (8.2). There- 

fore it would be fairly instructive to work out the Lorentz gauge case 

once more starting directly with (8.2). 

The motion equation for A4(x,~c) simply becomes 

aA4hT) 
2[A4(x,~) - i a~ ] =o (8.3) 

and gives 

A4(x,~) = e -“A4 (x,0) . (8.4) 

Hence, A4(x,~) is an abnormal type field (cf.(4.lb)). Furthermore, 

one finds 

aA4k,0) = 0 . (8.5) 

Therefore, the "physical" field A4(x,0) describes zero-mass particles. 



-24- FERMILAB-Pub-78/22-THY 

It follows from (7.13) under the condition (8.3) that 

0 A (x,T) = 0 . 
" 

(8.6) 

This equation will be invariant under the gauge transformation of 

Auk, T) , given by (6.10a) if 

OA(x, T) = 0 . 

From here and (6.11) - (6.12) one can conclude that admissible functions 

h (x,T) have to be of the form*: 

where 

h(X,T) = e-Al(X) + e-h2(x) I (8.7) 

13 Al(X) = ci X2(x) = 0 : Al+(x) = Al(X), A2+(x) = AZ(X) . 

The gauge transformation (6.10b) of A4 can be written now as 

A4k,r) + A4(x,~) + 2ie-lTX2(x) . (8.8) 

It is clear that Eq. (8.3) and Eq. (8.5) are invariant under this 

transformation. 

* 
According to (6.15) when X(X,T) is of the form (8.7), the gauge trans- 

formation of a charge field becomes 
-2iT 

$(X,T) + e 
ieOXl (x) ieOe x2 (xl 

* e $(X,T) . 

It is especially evident from here that the new gauge group is larger 

than conventional one, even when one is dealing with the Lorentz-gauge 

case. 
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Substituting (8.4) in the first equation of the set (7.13), one 

can easily find its solution. 

A (x, d = e i7 A (x,0) + sinr 
aA4(x,0) 

(8.9) 
lJ 11 ax” . 

Further, applying to (8.9) the gauge transformation (6.10a) with admissible 

A(x,T) we obtain: 

=' Au(x,O) 
[ 

+ 2 
aA4(X,0) ahlw 

Ap(x,~) + e 
a2 -l- a2 

-iT 1 
- e 

[ 

aA4(X,0) ah2 (xl 

-ST 
+ 

a2 a2 1 
Taking into account (8.4) and (8.8), it is natural to carry out 

(8.10) in two steps: 

i) By appropriate choice of X2(X) 

h2(x) = 2 A4(x,0) I 

one eliminates the abnormal component A4(x,~). The transformation 

(8.10) becomes 

iT 
axle 

- -- f 
a2 

1 (8.11) 

where we put Au' (x,0)= Ap(x,O) - 
ah2 (x) 

. In fact, we are faced 
a2 

with the situation considered above: electromagnetic potential is 

devoid of its fifth component (see (8.1) and (8.2)) and the Cam- 

ir 
ponents A , 

!J 
depending on = through e , obey Eq. (6.4). 

ii) By conventional choice of Xl(x) in (8.11), one reduces A,,'(x,o) 

to the pure transversal form, corresponding to the radiation gauge: 
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(8.12) 

Thus, the free electromagnetic 5-potential AM(x,~) = (Au(x,~),A4(x,r)), 

which can undergo the gauge transformation (6.10) and which satisfies 

Eqs.(7.13), is described by two transverse degrees of freedom, which can 

be referred to as the physical massless photons with two states of 

polarization. In other words, r-photons, corresponding to the extra 

component A4(x,~), like the scalar and longitudinal photons, corresponding 

to A,(x,r) and 
aZb,e 

a; 
, respectively, are pseudoparticles, which do not 

manifest themselves as independent dynamical degrees of freedom. However, 

an existence of the abnormal r-photon component of the electromagnetic 

potential and the fact that a new gauge group is larger than the old one, 

lead to drastic consequences for symmetry properties and structure of 

electromagnetic interactions in the high energy domain Ipi 2 1.14 

IX. CONCLUDING REMARKS 

In this paper we begin a new series of publications concerning the 

problem of constructing a quantum field theory with a new universal 

constant - fundamental length R. The main development after the earlier 

approach 
l-10 

1s based on the following observation. The nonlocal field 

theory with De Sitterian momentum 4-space and granularitied space-time, 

described in Refs. l-10, can be embedded in the 5-dimensional formalism 

manifesting familiar features of a local theory and containing the same 

constant P, as a parameter. Along these lines, one may realize 

that electromagnetic potential must be completed by an additional 

r-photon component and be treated as a 5-vector, allowed arbitrariness 
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in its definition being associated with a new larger gauge group. 

If one would consider non-Abelian gauge theories in a framework of 

the given approach then the extra (fifth) components of relevant gauge 

vector fields have to appear. For example, in generalized QCD, we shall 

deal with T-gluons. The corresponding SUcolour(3) gauge field is 

AMak,r) = (Auak,d, A4=(x,r)); a = 1,2,...,8 , (9.1) 

where the quantitites A 
4=( 

X,T) describe the r-gluon octet. 

In complete analogy with (6.14) one can show that the gauge trans- 

formation of (9.1) is given by 

e -” ^A, -f fi(x,r) e -== ^AM o-l(X,T) - h [& ncx,T)] n-l(x,T) 

~(x,T) = exp [ige-lT%(xr'T) 1 I 

where 

“A 
M 

= A; t= , ^x = Aa t=, 

[ta,tb] = i fabc tC; a,b,c = 1,2 ,...,S 

+ + 
[A=(x,-T) 1 = X=(x,r); (A;(x,-7)) = (A;(w), - A+)) . 

(9.2) 

The analog of the 5-tensor (7.1) is of the form 
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F& = 2 [e-iT A; -ir a. 

axN 
(x,rll - -L 

axM 
[e AN(x,r)l t 

+gf 
abc b 

AM(x,~) A~(x,T) e-2iT . 

(9.31 

The further development of this formalism will be described elsewhere. 

Let us stress that all "taons" (t-photons, t-gluons, etc.) are 

connected genetically with a curvature of p-space (3.3) or, in other 

words, with our fundamental length. Therefore, it is tempting to 

speculate that the taon field can be treated as some equivalent of 

De Sitter geometry in 4-dimensional p-space, say, in the same 

spirit, as the graviton field is an equivalent of space-time curvature 

in general relativity. Then interactions, mediated by taons, could be 

considered as a result of scattering of the usual particles on granular- 

ities of 4-dimensional configuration space. 

Our scheme allows us to apply any language developed in a framework 

of gauge theory formalism. For example, one can generalize the global 

formulation of gauge fields [16-171 introducing an appropriate non- 

integrable phase factor. In the QED case this quantity can be written 

* 
as 

'QP 
= exp c ie 

Q,-i* 
Cl 

AM(x,~) dxM I 

P 3 
M = 0,1,2,3,4 

* 
In usual units 

(9.4) 

'QP 
e-iT A (x,~) dxp + QemiT A 4 (x,5) dr . 

P 
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where the integral is taken along any path connecting point P and Q in 

the 5-space. The loop integral 

AM(x,T) dxM , (9.5) 

is evidently invariant under gauge transformation (6.9). Applying the 

5-dimensional version of Stokes' theorem one obtains 

AM(x,r) dxM = 
J S 

Fmbw) doMN , 

where the integral on the right is to be taken over the surface S 

limited by the given loop. For a free field AM ,due to Eq.(7.8a) and 

Eq. (7.9), one finds 

J F (x,T) dam = 
s MN 

J F (x) do"" . 
s LJ" 

According to the 4-dimensional version of Stockes' theorem 

J F (x) do'" = 
s uLv 

Au(x) dxl' 

Therefore in a free case 

P 

.-iT 
AM(x,7) dx 

M 
= 

P 
Au(x) dx' . 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

In the presence of sources, e.g. the hypothetical Dirac monopole, 

we have no Eq.(9.9) and the gauge invariant loop integral (9.5) is not 

even a hermitian quantity. Taking into account (7.15) one can show that 

e-i7 AM(W) d&j + = j- e-iT AM(x& dxM . 

T'-T 

(9.10) 
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Thus the corresponding "phase factor" 

4 Loop = exp [i e. $ ewiT AM(x,~) dx"], (9.11) 

can be considered unitary only within the framework of the definition 

(6.13b). But it clearly is a factor acquired by every charged-particle 

wave function $(x,T) after a travel around a closed loop in the presence 

of the given field Au(x,~): 

-iT 
e AM(x,'U dx M 1 *(x,T) . (9.12) 

Let us consider a case when the integration contour lies in the 

(x,y)-plane. Then again applying the Stokes' theorem, one gets 

$(t,:,T) + exp [i e. e-i' I ["";:"" - aAx~~~~'Ti]iixdy]i(t,~,i) (9.13) 

In our case this relation can be accepted as a starting point for 

speculations about an existence of the Dirac monopole. One can see that 

in order to maintain the Dirac quantization formula it is necessary to 

assume that the magnetic flux produced by the monopole has to depend on 

i-c the variable T only through the factor e . This leads to additional 

concern about the explicit form of magnetic charge source. As a result, 

the Dirac quantization formula becomes slightly artificial in the given 

context. Therefore, one may think that if a momopole does exist, its 

magnetic charge g can, in principle be much smaller than the value 

68.5 e. predicted by Dirac theory. 18 
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